Trading uninitialized space for time

Gabriel Valiente

Department of Software, Technical University of Catalonia, E-08034 Barcelona, Spain

Received 2 December 2003; received in revised form 19 May 2004
Available online 2 July 2004
Communicated by M. Yamashita

Abstract

The design of efficient graph algorithms usually precludes the test of edge existence, because an efficient support of that operation already requires time \(\Omega(n^2) \) for the initialization of an adjacency-matrix representation. We describe an alternative representation of static directed graphs taking \(\Theta(n + m) \) initialization time and using \(\Theta(n^2) \) space, which supports the efficient implementation of all usual operations on static graphs. The sparse graph representation allows the design of efficient graph algorithms using both iteration over all vertices adjacent with a given vertex and edge-existence operations, although at the expense of additional (uninitialized) space which may, nevertheless, be used for other purposes. To the best of our knowledge, the representation leads to the first graph algorithms with the disconcerting property that the time complexity is better than the space complexity.

\(\copyright \) 2004 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Analysis of algorithms; Data structures; Design of algorithms; Graph algorithms

1. Introduction

In the asymptotic analysis of algorithms, efficiency is measured as a function of input size. In the case of graph algorithms, graphs are usually assumed to be represented either by adjacency matrices or by adjacency lists. A graph algorithm runs in linear time if it can be implemented to run in time linear in the size of the representation of the graph, and it takes quadratic \(\Theta(n^2) \) time and linear \(\Theta(n + m) \) time, respectively, to initialize an adjacency-matrix and an adjacency-list representation for a graph with \(n \) vertices and \(m \) edges. Therefore, a graph algorithm cannot be implemented to run in linear time using an adjacency-matrix representation.

Adjacency lists are the representation of choice for the implementation of most graph algorithms, because they only take \(\Theta(n + m) \) space and support iteration over all vertices adjacent with a given vertex in time linear in the degree of the vertex. Adjacency matrices, on the other hand, take \(\Theta(n^2) \) space and support iteration over all vertices adjacent with a given vertex in \(\Theta(n) \) time, but support edge-existence test in \(\Theta(1) \) time. These iterators over adjacent vertices are fundamental to the edge-based programming of
graph algorithms [1]. Notice that neither bit-vector representations of adjacency matrices nor implicit representations of graphs [2–8] do improve these asymptotic time bounds, as long as both iteration over all vertices adjacent with a given vertex and edge-existence test need to be supported.

In this paper, we combine the best of both worlds by showing how a simple programming technique, known as key indexing and used in [9] for representing sparse sets, allows the representation of static graphs in $\Theta(n + m)$ time and $\Theta(n^2)$ space while supporting iteration over all vertices adjacent with a given vertex in time linear in the degree of the vertex, and also supporting edge-existence test in $\Theta(1)$ time.

The main interest of the sparse graph representation lies in the design of efficient graph algorithms without the need of avoiding edge-existence tests, although at the expense of additional (uninitialized) space which can, nevertheless, be used for other purposes. The sparse graph representation is, to the best of our knowledge, the first technique leading to graph algorithms with the disconcerting property that the time complexity is better than the space complexity.

2. The graph representation

A (directed) graph $G = (V, E)$ consists of a finite nonempty set V of vertices and a finite set $E \subseteq V \times V$ of edges. A graph $G = (V, E)$ with n vertices and m edges is called sparse if $m \in O(n)$, and it is called dense if $m \in \Omega(n^2)$. Let vertices be named, without loss of generality, by the ordered set $V = [1, \ldots, n]$ for a graph $G = (V, E)$ with n vertices, inducing thus an order on the set of edges incident with each vertex, and let $\text{rank}(i, j)$ denote the rank of vertex j in the ordered set of edges incident with vertex i. Let also $\text{deg}(i)$ denote the out-degree of vertex i, that is, $\text{deg}(i) = |\{j : (i, j) \in E\}|$, for $1 \leq i \leq n$.

The sparse representation of a graph $G = (V, E)$ with n vertices and m edges consists of two $n \times n$ integer matrices sparse and dense, together with a vector deg of n integer entries. Both matrices only have m initialized entries. Initialized entries in dense point to entries in sparse, which point back into dense. The values of other entries in dense and sparse are unimportant and, as a matter of fact, they are never initialized. Fig. 1 illustrates the sparse representation of a sample graph.

Definition 1. The sparse representation of a graph $G = (V, E)$ with n vertices is a triple $(\text{sparse}, \text{dense}, \text{deg})$, where sparse and dense are $n \times n$ integer matrices and deg is a vector of n integer entries, with $\text{sparse}[i, j] = \text{rank}(i, j)$ and $\text{dense}[i, \text{sparse}[i, j]] = j$ for all edges $(i, j) \in E$, and with $\text{deg}[i] = \text{deg}(i)$ for all vertices $i \in V$.

Correctness of the sparse graph representation can be established in a straightforward way.

Proposition 2. Let $(\text{sparse}, \text{dense}, \text{deg})$ be the sparse representation of a graph $G = (V, E)$ with n vertices. Then, $(i, j) \in E$ if and only if $1 \leq \text{sparse}[i, j] \leq \text{deg}[i]$ and, moreover, $\text{dense}[i, \text{sparse}[i, j]] = j$, for all $1 \leq i, j \leq n$.

Proof (sketch). Suppose that, due to the random contents of memory, it happens that $1 \leq \text{sparse}[i, j] \leq \text{deg}[i]$ for some $(i, j) \notin E$. Then, it must be $\text{dense}[i, \text{sparse}[i, j]] \neq j$, for otherwise it would be $(i, j) \in E$ by Definition 1, contradicting the hypothesis. \(\square\)

The sparse graph representation allows the implementation of edge-existence test in $\Theta(1)$ time.

![Fig. 1. Adjacency matrix (top) and sparse (bottom) representation of a sample graph.](image-url)
Roughly stated, for an absent edge \((i, j) \notin E\) first the uninitialized element \(\text{sparse}[i, j]\) is accessed. The value found there can be smaller than 1 or larger than \(\text{deg}[i]\), in which case the absence of \((i, j)\) is established, or be between 1 and \(\text{deg}[i]\) inclusive, in which case \(\text{dense}[i, \text{sparse}[i, j]]\) is consulted, but since \((i, j) \notin E\), \(\text{dense}[i, \text{sparse}[i, j]]\) cannot be equal to \(j\) and again, the absence of \((i, j)\) is established.

Furthermore, iteration over all vertices adjacent with a given vertex \(i\) can be implemented in \(\Theta(\text{deg}(i))\) time by just accessing elements \(\text{dense}[i, 1], \ldots, \text{dense}[i, \text{deg}(i)]\).

Given the adjacency list representation of a graph \(G = (V, E)\) with \(n\) vertices and \(m\) edges, the corresponding sparse representation can be obtained in \(\Theta(n + m)\) time. This is shown in Algorithm 1, where \(k = \text{rank}(i, j)\) for all edges \((i, j) \in E\).

The sparse graph representation also allows the implementation of edge insertion in \(\Theta(1)\) time. A more compact representation can be used, though, when edge insertion is not needed, consisting in replacing matrix \(\text{dense}\) by a vector \(\text{compact}\) of \(m\) integer entries, and vector \(\text{deg}\) by two vectors \(\text{low}\) and \(\text{high}\) of \(n\) integer entries. Fig. 2 illustrates the compact sparse representation.

Lemma 3. Let \((\text{sparse}, \text{compact}, \text{low}, \text{high})\) be the compact sparse representation of a graph \(G = (V, E)\) with \(n\) vertices. Then, \((i, j) \in E\) if and only if \(\text{low}[i] \leq \text{sparse}[i, j] \leq \text{high}[i]\) and \(\text{compact}[ext{sparse}[i, j]] = j\), for all \(1 \leq i, j \leq n\).

In the compact sparse representation, iteration over all vertices adjacent with a given vertex \(i\) can also be implemented in \(\Theta(\text{deg}(i))\) time by just accessing elements \(\text{compact}[\text{low}[i]], \ldots, \text{compact}[\text{high}[i]]\).

Notice that vectors \(\text{compact}, \text{low},\) and \(\text{high}\) together are, as a matter of fact, a representation of static directed graphs similar to the one proposed in [10, Ex. 6.14-2].

The additional, uninitialized space allocated by the sparse graph representation can be used for other purposes. For instance, in the context of an application involving a large, but constant, number of graphs, the \(\text{sparse}\) and \(\text{dense}\) matrices of the smaller graphs can be stored in the uninitialized entries of the \(\text{sparse}\) and \(\text{dense}\) matrices of the larger graphs, leading thus to a significant reduction in the additional space required by the sparse graph representation.

3. Applications

The usefulness of the sparse graph representation is illustrated in this section by means of example. The celebrity problem [11, Section 5.5] consists in determining whether there is a celebrity (someone who is known by everyone else, and does not know anyone else) among a group of \(n\) people by asking questions of the form: “excuse me, do you know the person over there?”.

In graph-theoretical terms, the celebrity problem can be modeled as a directed graph \(G = (V, E)\), where \(V\) corresponds to the group of \(n\) people and there is an edge \((i, j) \in E\) if and only if person \(i\) knows person \(j\). A celebrity corresponds to a universal sink (a vertex
with in-degree \(n - 1 \) and out-degree zero). Notice that a directed graph can have at most one universal sink.

The celebrity problem was also posed in [12, Ex. 22.1-6] as an example of a graph algorithm running in \(\Theta(n) \) time even if an adjacency-matrix representation, which takes \(\Theta(n^2) \) time to initialize, is used. Given a problem instance in the adjacency-list representation, it is clear that the solution can be found in \(\Theta(n + m) \) time and \(\Theta(n) \) additional space, by computing the in-degree and out-degree of all vertices, taking thus \(\Theta(n^2) \) time for dense graphs. Given a problem instance in the sparse graph representation, though, the solution can be found in \(\Theta(n) \) time, as follows.

A simple and efficient method for solving the celebrity problem consists of discarding people who cannot be celebrities. If the answer to question “excuse me \(x \), do you know \(y \)?” is yes, then \(x \) cannot be a celebrity, and if the answer is no, then it is \(y \) the one who cannot be a celebrity. Then, the answer to each such question allows discarding one person. Assume that \(x \) is eliminated and find, by induction, a celebrity among the remaining \(n - 1 \) people. If there is no celebrity among the remaining \(n - 1 \) people, then there is no celebrity among the \(n \) people. Otherwise, it must be checked that \(x \) knows the celebrity and that the celebrity does not know \(x \).

Algorithm 2 is an efficient encoding of the previous method. The algorithm is divided in two phases. In the first phase (lines 2–7), all but one candidate are discarded, and in the second phase (lines 8–13), it is checked whether the remaining candidate is indeed the celebrity. (Notice that in lines 4–6, either \(i \) or \(j \) is discarded. If \((i, j) \in E \), that is, if \(i \) knows \(j \), then \(i \) is discarded. Otherwise, \(j \) is discarded.) It is clear that the algorithm can be implemented to run in \(\Theta(n) \) time and \(\Theta(n^2) \) space, on graphs given in the sparse graph representation.

Notice that the problem instance is assumed to be given in the most appropriate representation. Otherwise, if the problem instance is given in adjacency-list representation, the trivial solution (computing the in-degree and out-degree of all vertices) would take \(\Theta(n + m) \) time and \(\Theta(n) \) additional space while the simple and efficient solution would take \(\Theta(n + m) \) time and \(\Theta(n^2) \) space. If the problem instance is given in adjacency-matrix representation, the trivial solution would take \(\Theta(n^2) \) time and \(\Theta(m) \) additional space while the simple and efficient solution would still take \(\Theta(n + m) \) time and \(\Theta(n^2) \) space.

4. Conclusions

The sparse graph representation combines the best of adjacency lists and adjacency matrices, and allows to represent static graphs in \(\Theta(n + m) \) time and \(\Theta(n^2) \) space while supporting iteration over all vertices adjacent with a given vertex in time linear in the degree of the vertex, and also supporting edge-existence tests in constant time. The representation can be easily extended to associate additional information with vertices and edges.

The main interest of the sparse graph representation lies in the fact that it allows the design of efficient graph algorithms without the need of avoiding edge-existence tests, although at the expense of additional (uninitialized) space. The sparse graph representation is, to the best of our knowledge, the first technique leading to graph algorithms with the disconcerting property that the time complexity is better than the space complexity.

The additional, uninitialized space allocated by the sparse graph representation can be used for other purposes. For instance, in the context of an application involving a large, but constant, number of graphs, the matrices of the smaller graphs can be stored in the uninitialized entries of the matrices of the larger graphs, leading thus to a significant reduction in the additional space required by the sparse graph representation.

```
1: function universal sink \((V,E)\)
2: \(i := 1\)
3: for all \( j \) from 2 to \( n \) do
4:    if \((i, j) \in E\) then
5:      \(i := j\)
6:    end if
7: end for
8: for all \( j \) from 1 to \( n \) do
9:    if \((i, j) \in E\) or \((j, i) \notin E\) and \(i \neq j\) then
10:       return false (there is no universal sink)
11: end if
12: end for
13: return true (vertex \(i\) is the universal sink)
14: end function
```

Algorithm 2. Determining whether a directed graph \(G = (V,E)\) with \(n \geq 2\) vertices contains a universal sink.
Acknowledgements

The author would like to acknowledge detailed comments by C. Martínez, R. Nieuwenhuis, and M.J. Serna on a preliminary version of this paper. The author would also like to acknowledge with thanks the anonymous referees, whose comments and criticism have led to further improvement of the paper.

References